

Union-Find

 Application in Kruskal’s Algorithm

 Optimizing Union and Find Methods

Minimum Spanning Trees

 Tree that connects all vertices of a graph

 Sum of the edge weights is a minimum

Kruskal’s Algorithm

 Sort edges in order of weights

 Start adding edges to sub-graph:

 Start from lowest weight

 Skip edge if it makes the sub-graph cyclic

Kruskal’s Algorithm

3

1

6

6

5 5

8

44

2

Union-Find & Kruskal’s Algorithm

 Vertices grouped in sets

 Can only add edges linking vertices not
in same set

Non-Optimal Solution

 Array of labels

 Change labels for a union

 O (n) for each union

 O (n^2)

Union-Find Methods

 makeSet (x)

 union (x , y)

 find (x)

Optimizing Union(x,y)

 Sets of vertices stored in trees

 Root of tree is label of set

 union(x,y) by joining two trees

 Root of smaller tree points to root of
larger tree

Union(x,y) Illustration

xy

Path Compression

 Nodes from ‘x’ to root have same label

 Change these parent-pointers to the root

Path Compression Illustration

g

b

a

d e f

c gb

a

d

e

f

c

Time Efficiency

 Sorting is O(e log e)

 Find maximum is O(log n)

 Path compression makes future finds O(1)

 Calling find many times gives O(1) average

 Union is 2 finds and a pointer change: O(1)

 Kruskal becomes O(e log e)

